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Abstract 

 

Design and operation of the electric power grid (EPG) relies heavily on 

computational models. High-fidelity, full-order models are used to study transient 

phenomena on only a small part of the network. Reduced-order dynamic and power 

flow models are used when analysis involving thousands of nodes are required due to 

the computational demands when simulating large numbers of nodes. The level of 

complexity of the future EPG will dramatically increase due to large-scale 

deployment of variable renewable generation, active load and distributed generation 

resources, adaptive protection and control systems, and price-responsive demand. 

High-fidelity modeling of this future grid will require significant advances in 

coupled, multi-scale tools and their use on high performance computing (HPC) 

platforms.  This LDRD report demonstrates SNL’s capability to apply HPC resources 

to these 3 tasks: 

 

•     High-fidelity, large-scale modeling of power system dynamics 

•     Statistical assessment of grid security via Monte-Carlo simulations of cyber 

attacks. 

•     Development of models to predict variability of solar resources at locations where 

little or no ground-based measurements are available. 
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1. INTRODUCTION 
 

Design and operation of the electric power grid (EPG) relies heavily on computational models.  

However, computational techniques in use today for modeling the EPG have not scaled beyond 

the workstation level.  Current modeling entails accepting tradeoffs between model fidelity and 

electrical grid size.  High-fidelity, full-order models are used to study transient phenomena and 

control interactions; computational limitations dictate that only a small part of the network be 

represented explicitly.  On the other hand, reduced-order dynamic and power flow models are 

used when analysis involving thousands of nodes are required.  The reduced order approach 

works, in part, because the system is normally operated with narrow voltage and frequency 

tolerances, where system behavior is approximately linear or well understood.   

 

The level of complexity of the future EPG will dramatically increase due to large-scale 

deployment of variable renewable generation, nonlinear controls, active load and distributed 

generation resources, adaptive protection and control systems, price-responsive demand, and full 

integration of information networks.  The additional complexity introduces a range of new 

forcing functions or system interactions, ranging from weather-driven generation variability to 

malicious cyber attacks, which can propagate through the system and degrade reliability over 

wide regions.  Modeling tools may require the simulation of increasingly complex scenarios with 

higher-fidelity models and much larger numbers of nodes; modeling of this future grid will 

require significant advances in the use of HPC for higher fidelity, coupled, multi-scale tools.   

 

This LDRD report demonstrates SNL’s capability to apply HPC resources, including Sandia’s 

Xyce software and the Red Mesa HPC platform, to three specific challenges related to power 

system modeling and simulation: :   

 

 High-fidelity, large-scale modeling of power system dynamics 

 Statistical assessment of grid security by evaluating impacts from cyber attacks on large 

networks, using Monte-Carlo techniques 

 Development and validation of PV output variability models that would extend the state 

of the art for solar resource modeling.  

 

Together, these three application areas represent fundamental challenges that need to be 

overcome to maintain system performance and reliability with increased complexity, high 

penetration of renewable resources, and full integration of information technology, which 

increases cyber-security concerns. 



10 

 

2.  SCALABLE HIGH FIDELITY ELECTRIC POWER GRID MODELING 

 

 

Traditional grid models for large-scale simulations assume linear and quasi-static behavior 

allowing very simple models of the systems.  In this section, a scalable electric circuit simulation 

capability is presented that can capture a significantly higher degree of fidelity including 

transient dynamic behavior of the grid as well as allowing scaling to a regional and national level 

grid.  A test case presented uses simple models, e.g. generators, transformers, transmission lines, 

and loads, but with the scalability feature it can be extended to include more advanced non-linear 

detailed models. The use of this scalable electric circuit simulator will provide the ability to 

conduct large-scale transient stability analysis as well as grid level planning as the grid evolves 

with greater degrees of penetration of renewables, power electronics, storage, distributed 

generation, and micro-grids. 

 

2.1. Introduction 
 

The scalability of simulation models for a wide range of power systems components has not been 

explored in significant detail. Dynamic models of the electric power grid (EPG) are divergent 

from the existing classes of electrical systems problems being solved in electric circuit 

simulators such as PSpice™.  The dynamic analysis of large-scale power grids needs an 

advancement of high fidelity scalable tools capable of addressing the future architecture of the 

EPG.  Currently, power grid models are either high level aggregated models (e.g. PSLF™, 

PowerWorld™) or low level high fidelity (e.g. Simulink™/SimPowerSystems™, PSpice™).  

The ability to analyze the impact of low level circuits (e.g. Photovoltaic arrays) on a large scale 

is missing. 

 

By using a parallel electric circuit simulator, developed at Sandia National Laboratories, Xyce™, 

the ability to model individual electric power grid components and group them into successively 

larger circuits that can replicate a large scale grid has been achieved.  This results in a unique 

analytical capability for the power grid simulation field.  Xyce™ has the ability to model highly 

complex circuits with very large numbers of nodes.  This ability is being leveraged to extend 

Xyce™ to the electric power grid by using electric circuit elements to model the various 

components of the power grid.  The ability to analyze the impact of high levels of penetration of 

solar PV, wind, fuel cells, and storage can be analyzed with such a tool.  This capability is 

needed to determine the impact of high levels of renewables, distributed generation, and storage 

in the future EPG. 

 

The use of electric circuit elements in Xyce™ for the EPG has some distinct advantages: 

--The ability to model EPG as a modular scale-up of electrical circuit components. 

--The ability to handle a very large scale network via parallelizable solvers. 

--The ability to interface with a graphical user interface to display simulation values on a    

grid map. 

Though some of the EPG components (specifically generators) are not easily modeled as 

electrical circuits, the re-use of models developed in other platforms (e.g. Matlab™) is currently 

being addressed. 
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The basic EPG components modeled consist of generators (including the prime mover, governor, 

and exciter circuit), transformers (three phase and single phase) transmission lines (both AC and 

DC), and loads (static and dynamic).  Constructing a power grid example begins with these basic 

components. To construct a realistic EPG, some assumptions were made on types of loads to be 

modeled as well as the size and types of neighborhood transformers, feeders, and substations to 

be represented. 

 

There are three different load types being modeled: residential, commercial, and industrial.  The 

only difference between the load types are the percentage of the load that is static vs. dynamic.  

Typically, residential loads are 80% static and 20% dynamic.  Commercial loads are 

approximately 50% static and 50% dynamic.  Industrial loads are generally 10% static and 90% 

dynamic.  Static loads are represented as variable resistors.  Dynamic loads are represented as 

induction motors.  More sophisticated load models can be designed as well.  Within each load 

type there are 3 residential sub-types: a medium home, a large home, and a medium apartment 

complex, 3 commercial sub-types: small, medium, and large, and 4 industrial sub-types: small, 

medium, large, and extra-large. For each of these sub-types, data for typical average power loads 

is used to determine how large the static and dynamic loads need to be in terms of power draw. 

 

The build-up of the substation circuits progresses from loads to the distribution transformer level 

to the feeder circuit then to the substation level.  For the higher levels, 9 distribution transformer 

types were defined, 6 feeder circuits were defined, and 7 substation types were defined.  Finally, 

at the grid level, the substations are connected to generators via transmission lines using the 

circuit models corresponding to these components.  A realistic EPG based on the state of New 

Mexico was constructed using the above procedure. 

 

Data visualization was accomplished by developing a Google™ map based graphical user 

interface (GUI). The GUI can display actual EPG nodes and edges (generators, substations, 

transmission lines) overlaid on a geographical map while displaying voltage and power time 

series data for selected nodes.  

 

2.2. Power Grid Component Models using PSpice Circuit Elements 
 

The basic model to be used for the electric power generators is based on [1]-[2] and depicted in 

Figs. 1-4. 
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Figure 1.  Equivalent circuit for d-axis of generator. 

 
Figure 2.  Equivalent circuit for q-axis of generator. 

The inductances and resistances Ra, Ll, Lad L1d, R1d, Lfd, Rfd, (Lfld – Lad), Laq, L1q, L2q, R1q, R2q, will 

be known a priori and are constant. 

 

Note that the currents id, i1d, ifd, iq, i1q, i2q are defined in the circuit diagrams as loop currents.  To 

determine the values of the dependent voltage sources in the above circuits, the following two 

equations are needed: 

 

ψd = - (Lad + Ll ) id + Lad ifd + Lad iid               (1) 

 

ψq = - (Laq + Ll ) iq + Laq i1q + Laq i2q               (2) 
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where ψd and ψq are the flux linkages of the d and q-axis circuits, respectively and the loop 

currents and inductances are as defined in Figs. 1-2. 

 

Then, the generator swing equations (equations of motion) must be solved to determine ωr, the 

angular swing velocity in rad/s to complete the expressions in the dependent voltage sources: 

  

pΔωr = ( 1/2H ) ( Tm – Te – KDΔωr )               (3) 

 

pδ = ω0 Δωr            

                   (4) 

 

where 

 

ω0 = 2π60                  (5) 

 

Δωr = ωr - ω0                  (6) 

 

with p being the derivative operator d/dt. 

 

Also needed is the generator output power.  The active power is given by 

 

Pt = edid + eqiq                                                              (7) 

 

and the reactive power is given by 

 

Qt = eqid – ediq .                                       (8) 

 

Te is the electromagnetic torque of the generator and is given by: 

 

Te = ψdiq - ψq id.                 (9) 

 

 
Figure 3.  Block diagram for the turbine with governor. 
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Tm is the generator input power and is the output of the prime mover model (e.g. turbine and 

governor).  It is being modeled as a non-reheat steam turbine with a proportional speed regulator 

governor and optional load reference setting as shown in Fig. 3 where 

 

(TCHTG)p
2
Tm  + (TCH + TG)pTm +  Tm  =  -(1/R)Δωr – (1/R)(LoadRef).            (10) 

 

Parameters and initial conditions for the above equation include: 

 

R=0.05, TCH  = 0.3 sec, TG  = 0.2 sec, LoadRef = 0.0, Tm(0) = 0.0, pTm(0) = 0.0. 

 

Finally, efd is the generator field voltage and is the output of the excitation system as shown in 

Fig. 4.  We’ll use an automatic voltage regulator (AVR) to determine efd.  In many large electric 

power generators, a power system stabilizer (PSS), may be incorporated, but we omit that here.  

The following equations describer the excitation system: 

 

pv1 + (1/TR)v1 = (1/TR)Et              (11) 

 

where Et = √(ed
2
 + eq

2
) and 

 

Efd = KA (Vref – v1)                (12) 

 

subject to saturation, e.g., if Efd ≥ EFMAX then Efd = EFMAX and if Efd ≤ EFMIN then Efd = EFMIN.  

Then 

 

efd = (Rfd/ Lad)Efd.               (13) 

 

 
Figure 4.  Block diagram for the excitation system. 

For this exciter, the following parameters and initial conditions are used: 

 

Vref = (1/KA)(Lad/ Rfd) efd(0)  + v1(0), TR = 0.015 sec, KA = 200, EFMAX = 7.0, EFMIN = -6.4, ed(0) 

= 0.631, eq(0) = 0.776, efd(0) = 0.000939, v1(0) = Et(0) = √(ed
2
 + eq

2
) at t=0. 
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The following are parameter values used in the testing of the generator equivalent circuit model, 

assuming a 60 Hz 3-phase round rotor (2 pole) synchronous generator rated at 555 MVA at 24 

kV, with a power factor of 0.9.  All of these values are in per unit, H = 3.5, KD = 0.3, Ra = 0.003, 

R1d = 0.0284, Rfd = 0.0006, R1q = 0.00619, R2q = 0.02368, Ll = 0.15, Lad = 1.66, L1d = 

0.1713, Lfd = 0.165, Laq = 1.61, L1q = 0.7252, L2q = 0.125, Lfld = Lad = 1.66 ==> the 

inductance in the d-axis subcircuit, Lfld - Lad = 0 (which is a typical assumption). 

 

2.3. Design of Example Power Grid 
 

In order to build up an example power grid from basic electric circuit components, the following 

four elements will form the basic building blocks of our example grid: loads, transformers, 

transmission lines, and generators as shown in Fig. 5.  Generators have already been defined 

from basic circuit elements in Sec. 1.2.  Transmission lines are often defined as basic circuit 

elements in circuit modeling software such as PSpice™.  More sophisticated transmission line 

models can be developed but are omitted here.  The basic three-phase transformer is modeled 

using the Y-Y connection as shown in Fig. 6 [3]-[4].  The loads are built up from static and 

dynamic load elements.  A static load is modeled here as a voltage controlled current source 

using PSpice™ 

 

gload n1 n2 value = {1/(RMIN/v(n1,n2) +  v(n1,n2)/PLOAD)}                               (14) 

 

which behaves like a resistor of value RMIN at low voltages and a constant power load of 

PLOAD at high voltages.  A very high percentage of industrial loads behave like induction 

motors, thus we model a dynamic load as an induction motor depicted in Fig. 7 [5]-[6]. 

 

 
Figure 5.  Block diagram relating different components of an example grid. 
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Figure 6.  Circuit diagrams for a Y-Y three phase transformer. 

 
Figure 7.  Equivalent circuit of an induction motor used to represent dynamic load 

elements. 

From (14) and Fig. 7, three different load types are defined: Residential, Commercial, and 

Industrial.  Subtypes are also defined within each type.  For instance, residential loads are 

defined as 20% dynamic and 80% static with an average power factor of 0.95.  Subtypes within 

the residential load include a medium-sized home (2300 sq. ft. with 1.75kW average power 

load), large-sized home (3000 sq. ft. with 2.25kW average power load), and a medium-sized 

apartment complex (75000 sq. ft. with 56.25kW average power load).  Commercial loads are 

defined as 50% dynamic and 50% static with an average power factor of 0.9.  Subtypes within 

the commercial load include a small load (1500 sq. ft. with 0.675kW average power load), a 

medium load (50000 sq. ft. with 22.5kW average power load), and a large load (200000 sq. ft. 

with 90kW average power load).  Examples of these sub-types include a gas station (small), a 

grocery store (medium), and a big box store (large).  Industrial loads are defined as 90% dynamic 
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and 10% static with an average power factor of 0.85.  Subtypes within the industrial load include 

a small load (200kW average power load), a medium load (500kW average power load), a large 

load (1MW average power load), and an extra-large load (3MW average power load).  The 

advantage of using circuit elements for these loads is that the only difference between the load 

types is the % of the load that is static vs. dynamic. 

 

The build-up of the substation circuits proceeds from load level to the distribution transformer 

level to the feeder level to the substation level as shown in Fig. 5.  In order to build up realistic 

power grids, we define multiple types for each level similar to what was done with loads.  That 

is, there are nine distribution transformer types, DTR1, DTR2, DTR3, DTC1, DTC2, DTC3, 

DTI1, DTI2, and DTI3, and six feeder types, Residential, Commercial, Industrial 1, Industrial 2, 

Industrial 3, and Mixed, and seven substation types, A, B, C, D, E, F, and G.  Details of how 

each of these levels is assembled from the lower levels are addressed in the Appendix. 

 

2.4. Data Visualization 
 

A graphical user interface (GUI) was developed using a graph structure with the edges 

representing transmission lines and the nodes representing substations, switching stations, and 

generators.  Fig. 8 depicts a screen shot of the GUI with node and edge data corresponding to 

power grid data from the State of New Mexico. 

 

To differentiate node types, generators are denoted as red squares, switching stations are 

depicted as blue triangles, and substations are drawn as yellow diamonds.  Each node has 

longitude and latitude coordinates allowing the nodes to be overlaid on a map application.  In 

this case, a Google™ map based application is employed. The topology information is input 

separately from the simulation variables, which will vary with different runs.  The simulation 

variables consist of 4 or 5 variables over time, with the duration being a couple of minutes 

sampled at sub-second intervals (potentially at much shorter sampling times).  The simulated 

variables at each node include real and reactive power, voltage magnitude and phase angle, and 

frequency. 
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Figure 8.  Screen shot of graphical user interface displaying power grid data for the State 

of New Mexico. 

 

In the screen shot of Fig. 8, the lower left portion of the GUI contains a legend for the nodes and 

for the transmission lines.  The transmission lines are color coded according to voltage category 

(e.g. 115 kV, 230 kV, 345 kV, etc.).  In addition, if the screen cursor hovers over an edge of 

interest, the voltage rating for that transmission line will be displayed on the screen.  The nodes 

are selectable, allowing one to display the time series plots in a control panel at the bottom of the 

screen.  In Fig. 8 above, nominal values for voltage magnitude and phase angle are displayed in a 

console format representing a nominal base case simulation. The GUI is still in a state of further 

development.  In the future, animation controls to view simulation values dynamically change 

over time will be added.  In addition, some of the simulation runs may want to remove edges and 

nodes and evaluate the impact of a transmission line outage or a generator failure.  Further, since 

the simulation captures detail down to the electric circuit level, a drill down capability will be 

added to the GUI allowing for time series values of individual loads and transformers. 
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2.5. Summary 
 

A modeling technique that combines the high fidelity of electric circuit models with the 

scalability of grid level elements was developed as a tool for the use of transient as well as steady 

state simulation of electric power grids.  Circuit simulation for electric power grid networks has 

some distinct advantages: 

 

 Ability to model grid as a modular scale-up of electrical components. 

 Ability to handle a very large scale network via parallelizable solvers using Xyce™ [7]. 

 Ability to interface with GUI to display simulation values on a grid map. 

 

Some disadvantages of using circuit simulation include: 

 

 Some of the components (e.g. generators) are not easily modeled as electrical circuits. 

 Models developed in other platforms (e.g. differential/algebraic equations or Matlab™) 

can be re-used here with some difficulty -- this is currently being addressed.  

 

The developed graphical user interface not only allows the representation of data over a 

geographic display but can also display time series values of selected nodes.  Further 

development will include the ability to run simulations with the user specifying which nodes and 

edges are to be removed (e.g. generator failure, transmission line outages, and substation 

blackouts). 
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3. USING HIGH-PERFORMANCE COMPUTING TO CALCULATE 
RELIABILITY IMPACTS FROM CYBER ATTACK ON ELECTRIC 

POWER SYSTEMS 
 

3.1. Introduction 
 

The goal of the work described here is to quantify the impact of cyber attack on the US electric 

power infrastructure. The approach is termed Reliability Impacts from Cyber Attack (RICA). 

RICA estimates the effect of cyber attack on reliability by computing reliability index values for 

simulated power system operation in two environments, one with cyber attack and one without, 

the difference in reliability being the impact of cyber attack. The work has aimed at producing 

results for the Western Electricity Coordinating Council (WECC) region. Significant effort was 

expended to accommodate the size of the WECC simulation by utilizing the Red Mesa high-

powered computing (HPC) platform at Sandia National Laboratories. The work reported here 

describes the results of running the RICA simulation for the standard IEEE reliability test 

systems (RTS-96) [31].  The Roadmap to Secure Control Systems in the Energy Sector [8] 

identifies a critical need to understand the possible impact of attacks on electric power systems in 

order to better prioritize mitigation investment to control risk. The approach taken in the 

Reliability Impacts from Cyber Attack (RICA) project provides a means to gauge the impact of 

cyber attacks independent of variations in weather, load, ordinary local outages, and time of day 

and year. The roadmap also points out that ―asset owners are hard-pressed to justify control 

system security‖ because they are unable to ―quantify and demonstrate the potential impacts of 

cyber attacks on energy sector control systems.‖ RICA analysis enables explicit quantification of 

cyber attack effects in terms of unserved load, enabling literal cost-benefit assessment of 

proposed cyber security measures. 

 

The goal of the RICA work is to usefully quantify the effects of security measures on grid 

reliability. This entails the subsidiary goal of harnessing sufficient computational power to 

enable production of RICA results for large-scale power grids. The work reported herein 

describes significant progress towards achieving these goals.  Current approaches to prioritizing 

security are weak because they rely on expert opinion and checklists to rank mitigation strategies 

and certify system security. These methods are flawed because they rely on untestable assertions, 

do not permit comparison among alternatives, and have been shown to overlook fundamental 

problems. The RICA approach provides testable, comparable, and comprehensive results 

concerning the efficacy of cyber security measures.  RICA results are intended to inform 

strategic decisions and have value to industry planners, investors, and other researchers 

deliberating among investments to improve cyber security. To isolate the effects of cyber 

security, outage metrics are reported on an annual basis to ―average out‖ the effects of the time 

of year and local outages. 
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Figure 9. Possible states for grid elements using the RICA approach 

Observed changes in RICA-produced reliability results are due to cyber security measures (and 

not, for example, the fact that it is currently winter). 

 

Work described herein represents a significant capacity increase over our previous efforts, 

described in [9]: results therein were for a notional five-bus system, whereas the results reported 

here are for the IEEE RTS-96 72-bus system, and the utilized computing platform has the scaling 

capacity to produce results for the 30,000-bus Western Electric Coordinating Council (WECC) 

transmission grid.  Several researchers ([10], [11], [12], [13], [14]) consider the ability to 

quantify system availability crucial to determining what kind of cyber hardening is needed to 

protect critical infrastructures. These researchers have examined reliability analysis as an 

approach to security analysis because it does exactly that: the prominent reliability measures are 

essentially system availability and outage characterization. The literature on this subject provides 

examples ([15], [16]) that specifically apply Monte-Carlo (MC) analysis to information security 

issues in a manner very similar to the current RICA approach.  Although the analogy between 

reliability and security is not entirely apt, we note the repeated statement in the work cited above 

that the probabilistic framework of reliability analysis is particularly suited for critical 

infrastructure cyber security. 

 

3.2. Reliability Analysis for Cyber Attack 
 

3.2.1. RICA Approach 
 

Given a grid—an electric power system comprising transmission lines, breakers and other 

switches, generators, and loads—reliability is defined as the efficacy of the grid in delivering 

power to the loads. In the RICA approach, reliability is represented by reliability indices, such as 

Loss of Energy Expectation (LOEE) and Frequency of Interruption (FOI), calculated using data 

from a simulation of the grid. RICA determines the reliability of a grid as follows: The grid of 

interest is modeled by integrating model of individual power system elements and the load-

satisfying behavior of this grid model is observed over several thousand simulated years using 

probabilistically determined outages for each individual power system component and empirical 

demand patterns. Load flow, unserved load, and any additional outages (e.g., line tripping due to 

overload) are computed at each time step. The amount of unserved load (and other data needed 
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to compute the relevant reliability indices) is accumulated [17], [18] and, generally, averaged 

over time and reported per unit time. This approach is termed MC reliability analysis [19]. 

 

The high-level diagram for constituent grid components is shown in Figure 9. Each grid element 

(generator, line, or shunt) starts the simulation in service, and failure may cause it to go out of 

service. Failure may be random or purposely caused, e.g., by an attack on the system. After 

failure, an element returns to service after an interval during which repair, forensics, and so on 

ostensibly occur. This presumably results in the protection scheme being restored or a 

workaround developed, after which the grid element is restarted and reconnected to the grid 

(which may involve an additional delay, such as for a warm restart of a generator). If a 

Supervisory Control and Data Acquisition (SCADA) attack causes de-energization of the 

component, then it enters the SCADA forensics interval, before being reconnected.  Several 

metrics based on unserved load and outage characteristics are computed. Overall, system 

reliability is measured  using indices, including FOI (in occurrences per year), Loss of Load 

Expectancy (LOLE) (in hours per year), LOEE (in  MW hr per year), Duration of Interruption 

(DOI) (in hours per  interruption), Energy Not Served per Interruption (ENSI) (in  MW hr per 

occurrence), Load Curtailed per Interruption (LCI)  (in MW per occurrence), and Energy Index 

of Reliability (EIR)  (the ratio of energy served to yearly demand). 

 

During MC simulation, unserved load is calculated once per simulated unit of time (every hour, 

in RICA; generally, times discussed herein refer to simulation time, not actual ―wall clock‖ 

time). For each such calculation, each system element is independently determined to be in or 

out of service as follows: At the beginning of the simulation1, the time interval until the next 

failure of each piece of equipment is determined by scaling a sample from an exponential 

distribution by the relevant Mean Time to Failure (MTTF). This interval is added to the current 

simulation time to give the item’s ―failure time‖, i.e., the time at which it will fail. All active 

items whose failure time is less than or equal to the current time (i.e., whose failure time has 

passed) are marked ―Failed‖ and do not contribute to generation or transmission. Failed 

equipment returns to service after an idle period (during which it is ostensibly being repaired) 

determined by a similar sample scaled by the equipment’s Mean Time to Recover (MTTR).  

Each type of equipment has its own MTTF and MTTR. This is conventional for reliability 

studies; note that there are no de-rated states used in this approach currently.)  Once it has been 

determined which elements are functioning, load flow is calculated based on the remaining 

transmission lines and their capacities, the structure of the remaining network (i.e., what’s still 

connected to what), the capacities and setpoints of the remaining generators, and the loads to be 

served at that moment. Load magnitudes are based on empirical demand statistics. If the load 

flow indicates possible line overloads or other violations of limits, then an optimization routine is 

applied to shift generation in order to maximize served load. (This last step mimics the realistic 

restorative actions that would be taken by system operators when presented by a contingency 

situation; failure to model this would result in unreasonably low reliability calculations.)  [15] 

calls the generation-transmission system, also referred to  as the bulk power system, the 

―Hierarchical Level II (HL-II)‖;  HL-III includes distribution. 

 

Distribution is not included in the RICA model because aggregation of load at the substation 

level provides sufficient resolution to develop an informative load picture at the regional and 

national levels.  The approach as described so far provides a measure of system reliability that 
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accounts for random equipment failure and recovery on an item-by-item basis. We refer to such 

outages as natural to distinguish them from failures caused by cyber attack. To understand the 

impact of cyber attack, attacks and their effects must be modeled and added to the process of 

natural outages described above. Cyber attacks happen in addition to natural outages; both 

degrade grid performance, but they are represented independently in the model because they are 

expressed and mitigated in different ways. For each component the time until the next successful 

cyber attack is currently modeled using an exponentially distributed random variable that’s 

independent of the natural outage variable and a selected mean time to attack (MTTA). The 

MTTR for a cyber-attacked piece of equipment is based on the time required for cyber forensics, 

control system restoration, and device restoration.  The separate contributions of generation and 

transmission to whole-system reliability can be examined using RICA because both are explicitly 

represented. This means, for example, that RICA can be used to assess whether a cyber security 

budget would be better spent protecting generators or protecting transmission lines. 

Alternatively, the algorithm can show that sources would be best invested shortening the 

recovery time from cyber attacks, as opposed to potential modest improvements in prevention. 

 

3.2.2. Attacks against Protection 
 

To study protection attacks, we focus on attacks against three common types of protective 

relaying: Generator protection, Bus protection, and Line protection. Although generation 

protection attacks are generally unlikely, they are included since loss of generation is frequently 

modeled in reliability studies (although not, at least in the prior literature, from cyber attack). 

Based on a certain linked set of parameters from the Cyber-to-Physical (C2P) bridge, a 

successful attack is modeled as causing the generator to go offline as its breakers trip. The 

substation marks the boundary between ―distribution‖ and ―transmission‖; power transport 

between generation and the substation is considered transmission, everything below the 

substation is distribution.  Mean time to attack is similar to mean time to failure, except that 

MTTA is the average interval between successful cyber attacks and MTTF is the average interval 

between random outages. Most generators reside in generating stations, where protection 

significantly limits the possible attack paths. The interval between successful attacks is modeled 

using an exponentially-distributed random variable and some selected MTTA.  The MTTR for 

the generator depends on the time required for cyber forensics and control system restoration, 

and the restart time for the generator, which depends on its classification as hydro, thermal, or 

nuclear (see Table II).  A successful bus protection attack will presumably activate the 

differential scheme and completely isolate all connected devices. Bus protection is also 

considered a difficult scenario for an attacker given limited connectivity of its constituent relays. 

However, the large loss in connectivity will likely cause significant losses in grid performance.  

Line protection attacks assume advanced relays that allow cyber control of the protective 

breakers at both ends of a transmission line. A successful cyber attack opens the breakers and 

removes the line from service. The line is successfully attacked at random intervals denoted by 

an MTTA and is out of service for an MTTR, as above. This is again similar to the process for 

natural outages, but with the recovery interval dependent on cyber remediation and line 

restoration. 
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3.2.3. Attacks against SCADA 
 

Adversarial penetration and use of a grid’s SCADA system to send trip signals to system 

breakers was also modeled. Open breakers can isolate generators, open lines, and disconnect 

shunts and loads. The interval between successful attacks is determined by sampling from an 

exponentially-distributed random variable scaled by a specified MTTA, in a manner similar that 

used in the protection modeling. The MTTR, or downtime, is in this case the duration of the 

interval during which the breaker is open. We assume the duration would accommodate the 

cyber forensics activity any component restoration time. Another parameter for analysis is the 

Average Percentage of Tripped Breakers (APTB) stemming from a successful attack, which is 

modeled using a Bernoulli random variable for each breaker with a selected mean value 

pSCADA.  The APTB parameter enables quantification of the concept that not all breakers will 

be sent a trip signal by the attack, not all breakers sent a trip signal will receive it, and not all 

breakers receiving a trip signal will trip. 

 

3.3. Rica Computation and Workflow 
 

The elements of RICA computation, shown in Figure 10, are: Load Flow Computation, 

Optimizer, Pre-processor, Scheduler, Database, Data Harvester, and Visualization. 

 

3.3.1. Load Flow Computation 
 

The general relevance of the RICA analytical tool stems from the notion that the load-flow 

simulation determines fairly accurately the degree to which the modeled power grid satisfies a 

given set of loads.  The load-flow calculation is an iterative algorithm based on Kirchoff’s laws, 

and takes as input a grid, a maximum generation level at each power-producing node, and a 

requested load at each power-using node. The algorithm determines the amount of power carried 

by each line in the modeled grid, up to its capacity, as generated power is transported to the 

loads.  Note that any network, whether real or simulated, may be unable to satisfy a given set of 

loads because of failures and/or lack of transport capacity (it may not be possible to supply a 

given set of loads no matter how much power is being generated if lines have failed, because 

every line has a maximum capacity). In general, a real power grid will have evolved specifically 

to supply the loads encountered in everyday operation, bringing effectively to zero the 

probability an expected load will not be satisfied under normal conditions.  To accommodate 

new loads, either generation and transport capacity is added or the network structure is altered. 

And, of course, in a real power system, loads can simply disappear for any number of reasons, 

e.g., by being satisfied from a non-grid power source, or when the building housing the load 

burns down, or when the company using the energy goes out of business. 
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Figure 20. Executing RICA on the Red Mesa HPC 

 

3.3.2. Optimizer 
 

In a simulated power system, there is no foreknowledge that the network is capable of satisfying 

a given set of loads. In RICA, an optimization process acts to maximize the percentage of 

requested load that is satisfied. RICA optimization is based on the idea that generation can be 

adjusted within some capacity range to supply additional power to loads that are undersupplied 

because of power transport limitations.  In RICA, if significant load is unsatisfied after load flow 

calculation, the optimizer adjusts generation to maximize the amount of satisfied load. This is 

understood to be a fairly realistic simulation of human power system operators, who attempt to 

do the same thing in real life when elements of a power system fail. 
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3.3.3. Pre-Processor 
 

The pre-processor parses power system data provided in multiple formats, conditions the power 

system initial state to avoid a large difference in generation and consumption, calculates the 

outage and repair times for each power system component based on its MTTF and MTTR, stores 

the resulting power system and outages in the RICA database, and dumps the outage data to files 

for use by the optimizer.  The pre-processor places object models in the RICA database for each 

power system component (bus, branch, generator, load, and shunt) along with object models that 

represent simulations and outages. As power system data input files are parsed, models are 

created and placed in the database for each element of the power system. These are then used to 

construct scenarios, which consist of outages for the different power system components.  Once 

the power system models are created from the input files, the pre-processor creates a new 

simulation object, which includes a length of time for which the simulation is to conduct Monte 

Carlo Analysis. It then loops over all the generators and  branches in the power system and, 

given the length of time for  the simulation, calculates outage and repair times for each of  the 

generators and branches using a uniform random variable  based on MTTF and MTTR values. 

For each of the outage instances calculated, a record is saved to the database using the outage 

object model.  Once the simulation is configured with outage and repair times, the outages are 

analyzed to determine ranges of hours where at least one component is out of service, an overall 

range file is created with the given ranges, and a config file containing which components are 

coming on or off line at each hour within a range is generated for all the ranges detected.  The 

pre-processor makes it possible to regenerate the outage files described above (i.e., a file of 

ranges with a config file for each range) using data in the database and different MTTF and 

MTTR values. 

 

3.3.4. Scheduler 
 

The scheduler assigns processing tasks to Red Mesa processors.  In RICA, each processing task 

is a time interval during which a particular set of outages, loads, and generation holds.  The 

percent of load being satisfied, having been maximized by the optimizer, does not vary over the 

time interval since the network configuration (outages, nodes, and generation), and therefore the 

maximized load flow, do not change. The  larger the power network, the less likely it is that there  

will be no changes in load, generation, or outage conditions, which implies a greater number of 

scheduled calculations.  Thus, the larger the network the more separate tasks need to be 

scheduled. The scheduler acts to distribute computational burden efficiently to the available 

processors. 
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Figure 31. Network diagram of the 300-bus system 

 

3.3.5. Database 
 

The database stores all the input network/outage data and all output in the form of network load 

flow. The relevant output from a reliability perspective is the amount of requested load service 

that is actually provided by the network. RICA runs on the 180-teraflop Red Mesa6 HPC 

platform at Sandia National Laboratories (see Figure 11). RICA has  successfully run a 300-node 

(see Figure 11), 1000-year hourly-  hour simulation, which required a minimum of 8,760,000  

one-hour load flow calculations, not counting the multiple  load-flow computations needed for 

each optimization, and processed  the output to obtain visualization images (see Figures 12, 13, 

and 14). RICA on Red Mesa also has calculated optimal load flow for the 30,000-bus model of 

the WECC power grid.  Database population is automatic using data produced during RICA 

operation. Construction of database entries can be turned on and off to avoid data records during 

acceptance testing. Current database entries have been produced from the IEEE test suites. The 

largest RICA outputs demand more disk space (non-volatile memory) than is currently available 

on the database server. This could be alleviated by providing additional storage or output 

postprocessing.  A web interface enables simulation results to be viewed and provides summary 

statistics and visualization to allow comparison of database entries. The web interface allows 

ready visualization of data in the database in near-real time following code execution. Figures 

11, 12, 13, and 14 are taken directly from the website. The visual output is a starting point for 

further visualization work. Note that Red mesa is a subset of the Red Sky High-Powered 

Computation (HPC) platform, as indicated in Figure 10. 



28 

 

 
Figure 42. Histogram showing number of cases for served-load percentage  intervals for 

the 300-bus system 

 
Figure 53. Pie chart showing fraction of cases of served-load percentage for the  300-bus 

system   
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Figure 64. Line showing served-load percentage from simulation from beginning to end 

for the 300-bus system 

 
Table 7.  Device Forensics Intervals For Cyber Attack 

 
Table 2.  Restart Delays For Generators After Cyber Attack 

 
Table 3.  Restart/Reconnection Delays For Grid Elements After Cyber Attack 
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Table 4.  Change In WECC Reliability Indices, With Cyber Attack (Forensics Intervals As 
Shown In Table I) 

 
Table 5.  Change In WECC Reliability Indices, With Cyber Attack (Forensics Intervals 

Halved Compared To Table IV 

 
 

3.4. Rica Simulations and Results 
 

The three-area RTS-96 system was simulated according to its given parameters (loading, 

topology, non-cyber outages rates) and augmented by cyber attacks against generator, line, and 

bus protection as well as SCADA. The additional cyber parameters are shown in Tables 1-5. 
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4.  PV OUTPUT VARIABILITY MODELING USING SATELLITE 
IMAGERY 

 

4.1. Introduction 
 

One barrier to adding large amounts of photovoltaic (PV) solar energy to the electrical grid is the 

current uncertainty about the level of variability in power generation that large PV systems may 

introduce.  Variability at unacceptable levels might threaten the stability of the electrical grid, 

decrease reliability, and possibly damage expensive equipment (e.g., transformers).   

 

Utilities are required to match load with generation or risk being fined or causing damage to their 

grid.  Because load is variable and not entirely predictable, utilities have methods to maintain 

balance, including running fast ramping generator units under a control scheme called automatic 

generation control (AGC), contracting for interchanges with neighboring balancing authorities, 

among others.  It is unknown how these control methods will be affected by the presence of large 

PV plants on the grid.   

 

Methods for controlling the variability introduced by large PV plants could be studied using 

models to simulate output of PV plants.  However, current models are constrained by the lack of 

irradiance data with appropriate temporal and spatial resolution.  Data from single irradiance 

sensors show that irradiance at a point can change from full sunshine to about 20% of full 

daylight within a few seconds.  However, it is unclear how rapidly the output from a large PV 

plant will change.  Studies have shown that the output of a PV plant changes more slowly than 

does the output from a single PV module (e.g., Mills et al. 2009).  It is commonly accepted, 

however, that irradiance changes on the order of one minute may be significant when simulating 

a PV plant.  Irradiance measurements at one minute or shorter intervals are generally available 

only at a few locations within a utility service area (if at all).  Satellite data is currently used to 

estimate irradiance in places with no sensors, but the spatial and temporal resolution of this data 

is generally quite coarse.  For example, the SUNY database supplies irradiance estimates for a 10 

km grid at 1- hour intervals (Perez et al., 2002) and 3Tier advertises hourly irradiance data at ~3 

km resolution (www.3tier.com).  These datasets currently provide no information about 

irradiance within the hour or at a significantly finer spatial scale.  There is no general consensus 

on how to estimate irradiance with high temporal and spatial resolution at locations where there 

are no sensors. 

 

This section describes work building towards a method to estimate high frequency (i.e., one 

minute) irradiance values from satellite imagery for places at which ground measurements are 

not available.  In concept, this method would estimate irradiance from satellite imagery that is 

available approximately every 15 minutes.  Cloud patterns in each image would be used to 

determine the variability of irradiance within each 15 minute period between images.  Here, we 

document analysis of satellite imagery, including jitter correction and cloud recognition 

algorithms, in preparation for training a neural network to simulate irradiance between images.  

Ultimately this work might provide the ability to predict one-minute PV plant output at these 

locations. 

 

http://www.3tier.com/
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We focused the study on a small region in southern Nevada, where ground measurements of 

irradiance are available at a one-minute time resolution.  Satellite data from the Geostationary 

Operational Environmental Satellite 11 (GOES-11) was downloaded from the National Oceanic 

and Atmospheric Administration (NOAA) web site for the study area for most of calendar year 

2008.  The GOES 11 was launched in June 2006 and provides imagery of the western North 

America and the Pacific Ocean.  

 

Because the satellite imagery pixel size is approximately one square kilometer, satellite imagery 

does not offer sufficient resolution to estimate the exact time that a specific location within a 

square kilometer is occluded by cloud shadows.  Consequently it is considered impossible to 

predict to the nearest minute when a cloud shadow will reach a certain location.  However, we 

believe it may be possible to predict the number and severity of ramps within the hour based on 

the type of clouds and their spatial patterns as seen in the satellite imagery. 

4.2. Modeling Approach 
 

Figure 85 illustrates the modeling approach.  The GOES 11 imagery is prepared for analysis by 

identifying cloudy and clear areas by means of a neural network, as discussed in the remainder of 

this section.  The model would next use a second neural network to generate irradiance at a 

location for every minute between successive pairs of images.  The second neural network would 

be calibrated with sample irradiance measurements from other ground locations.  Although we 

were able to make preliminary tests of this second approach, these efforts will be further 

developed before irradiance results are reported in a later report. 

 

 
Figure 85. Modeling approach for generating irradiance from two images 15 minutes 

apart. 

 

The basis for this modeling approach is illustrated in 16, which shows three successive images of 

the same region around Las Vegas, NV, , and the corresponding irradiance profile from two 

ground measurement sites.  In the first image, clouds cover both sites, and the measured 

irradiance at both sites is low.  In the second image, Fort Apache (blue) is no longer covered and 
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its measured irradiance has increased.  In the final image, both Fort Apache and UNLV (red) are 

not covered by clouds in the satellite image. 

 

 
Figure 16. GOES 11 images of Las Vegas region for 6/04/2008 around 4PM (PST) with 

corresponding measured irradiance at two ground locations. 

4.3. Sources of Ground Measurements of Irradiance 
 

Within the Las Vegas, NV, region there are eight ground stations where measurements of global 

horizontal irradiance are available at one minute intervals (Figure 19).  The stations are located 

within the Las Vegas metropolitan area.  Six of the stations are collocated with PV generation 

plants operated by the Las Vegas Valley Water District (LVVWD) and two stations (UNLV and 

Clark Station) are operated by the National Renewable Energy Laboratory (NREL).  Table 6 

provides information on these monitoring sites. 

 

One minute data available at these sites include measurements of global horizontal (GHI), direct 

normal (DNI), and diffuse horizontal irradiance (DHI).  In addition, standard meteorological data 

such as temperature, relative humidity, wind speed, etc., are also available.  
 
 
 

Table 6. Irradiance Monitoring Stations used in this Study 

Site Latitude Longitude Operator Start Date 

LVSP 36.17° N 115.19° W LVVWD 7/26/2007 

Luce 36.2° N 115.26° W LVVWD 5/2/2007 

Spring Mountain 36.12° N 115.29° W LVVWD 11/30/2006 

Grand Canyon 36.22° N 115.31° W LVVWD 9/30/2006 

Fort Apache 36.22° N 115.3° W LVVWD 8/23/2006 

Ronzone 36.19° N 115.23° W LVVWD 4/27/2006 

UNLV 36.06° N 115.08° W NREL 3/18/2006 

Clark Station 36.09° N 115.05° W NREL 3/27/2006 
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Figure 19.  Close-up of the Las Vegas Metropolitan Area showing the location of 1-minute 

irradiance sensors. 

 

Figure 18 shows GHI data from the Fort Apache station for a two day period (April 15-16, 

2007). 

 

 
Figure 110.  Global horizontal irradiance measured at 1-minute intervals at Fort Apache 

station over a two day period. 
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4.4. Sources of Satellite Imagery 
 

Satellite data from the Geostationary Operational Environmental Satellite 11 (GOES-11) was 

downloaded from the National Oceanic and Atmospheric Administration (NOAA) web site for 

the study area for the calendar year 2008.  The GOES 11 was launched in June 2006 and 

provides imagery of the Pacific United States (PACUS), northern hemisphere, southern 

hemisphere, and the full visible earth.  The satellite has a geostationary orbit at 35,790 km above 

the equator at 135 deg W longitude.  The satellite has a 5-channel imager, each connected to a 

different radiation detector (Table 7).  Imagery is produced by scanning different parts of the 

Earth at different times.  The scan schedule is shown in Table 8.  The various image frames take 

different amounts of time to perform a scan (Duration).   

 

The Study Area in Southern Nevada (Figure 111) is included in the Full Earth, Northern 

Hemisphere, and PACUS frames and therefore images of the Study Area are available 

approximately every 15 minutes with a gap every three hours when the Full Earth frame is 

scanned.  Figure 12 provides an example image of the Study Area showing the location of two 

ground irradiance monitoring stations.  Note that the image is distorted due to the angle of the 

satellite, which causes the resolution in the N-S direction to be different than in the E-W 

direction. 

 
Table 7.  List of available data from GOES Satellites 

Channel Number Wavelength Range (µm) Detector Type 
Nominal Square 

IGFOV at nadir 

 1  0.55 to 0.75 Silicon 1 km 

 2 (GOES 8/9/10) 

 2 (GOES 11/12) 

3.80 to 4.00 

3.80 to 4.00 
InSb  

4km  

4km  

 3 (GOES 8/9/10/11) 

 3 (GOES 

12/13/14/15) 

6.50 to 7.00 

5.77 to 7.33 
HgCdTe  

8 km 

4 km  

 4  10.20 to 11.20 HgCdTe  4 km 

 5 (GOES 8/9/10/11) 

 5 (GOES 

12/13/14/15) 

11.50 to 12.50 

12.96 to 13.72 

HgCdTe  

HgCdTe  

4 km 

4 km 

 
Table 8. Image Scan Routine for GOES-11 

Frame Name Boundaries Duration 

(mm:ss) 

Scan Times 

(UTC) 

Full Earth Earth Edge 26:10 0000, 0300, 0600, etc 

Northern Hemisphere 0-66N/90W-170E 9:00 xx00, xx30 

Southern Hemisphere 0-45S/115W-170E 7:00 xx22, xx52 

PACUS 12-60N/90-175W 5:00 xx15, xx45 
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Figure 111.  Map of Study Area.  State boundaries in white, locations of irradiance 

stations in the Las Vegas area are shown. 

 
Figure 12.  Example of GOES-11 Image with approximate state boundaries shown.  The 

locations of two irradiance sensors are shown for reference. 
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4.5. Image Stabilization 
 

NOAA geographically locates each pixel and calculates its closest latitude and longitude.  This 

georeferencing algorithm is not perfect due to slight vibrations and variations in camera and 

mirror parameters.  The result is that a visibly identifiable geographic location will not have a 

consistent latitude and longitude through time as calculated by NOAA.  If uncorrected, the 

variability in a location’s latitude and longitude would result in movement of the apparent 

position of objects in the geographically segmented image.  This image jitter is typically less 

than ±3 pixels (3km) in the x and/or y directions.  Location variability includes both major 

movement of the image (>1 pixel) as well as sub-pixel image jitter.  The images are processed 

through an image stabilization routine to correct for the jitter. 

 

4.5.1. Image Stabilization Algorithm 
 

Image stabilization is done by shifting an image to obtain the greatest correlation with a 

reference image constructed for each time.  Construction of the reference images begins by 

identifying all clear sky images in the data set by applying the movement detection algorithm 

(Section 3.6.2) to exclude images with clouds.  The brightest image as determined by average 

pixel intensity is selected from the identified clear sky images as the base reference image.  

Reference images at other times are constructed by scaling the image brightness and contrast by 

linear interpolation between clear sky images; scaling factors are determined by the neural 

network described in Section 3.6.3.  Images are stabilized to the concurrent reference image by 

first expanding each image’s resolution by four times by linearly interpolating in both x and y 

dimensions.  Next, the expanded resolution image is shifted by +/- 16 pixels in the x and/or y 

directions, and each shifted image is compared with the expanded resolution reference image.  

The shift exhibiting the best correspondence with the expanded resolution reference image is 

selected.  Correspondence is determined by calculating correlation coefficients between two 

images.  Finally, the shifted image is transformed to the original resolution through bilinear 

averaging and antialiasing.   

 

The MATLAB (Image Processing Toolbox) function normxcorr2 is used to compute the 

normalized cross-correlation of the two images using the following general procedure: 

 

1. Calculate cross-correlation in the spatial or the frequency domain, depending on 

size of images. 

2. Calculate local sums by pre-computing running sums. 

3. Use local sums to normalize the cross-correlation to get correlation coefficients.  

 

The implementation closely follows the following formula taken from the MATLAB 

documentation: 
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Figure 13 illustrates the results of the image correction process.  The effect of jitter correction 

can be illustrated by the distribution of differences in pixel intensities between two images 

(Figure 14).  Before correction, pixel intensity is biased compared to a reference image and 

exhibits wide variance; jitter correction results in unbiased pixel intensity with greatly reduced 

variance.  

 

 
Figure 13.  Illustration of image stabilization algorithm: (a) image after jitter correction; 

(b) difference between corrected and reference images; (c) difference between corrected 
and reference image. 
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Figure 14.  Histograms of difference in pixel values between reference image and 

uncorrected and corrected images. 

 

4.5.2. High Performance Computing for Image Stabilization 
 

Image stabilization is a great candidate for high-performance parallel computing because of the 

numerical requirements of the interpolation and cross-correlation, as well as the inherent 

parallelism in the algorithm.  Since the stabilization algorithm operates on each image 

independently, it is trivial to write a parallel code to process a large set of images. 

 

Our first implementation of a parallel stabilization code uses one process as a ―task-manager‖ to 

keep track of the images that need to be processed.  The remaining ―worker‖ processes execute 

the stabilization algorithm for the set of images requested by the task-manager.  This approach is 

more appealing than an evenly-distributed approach because some images take much less time to 

process.  The algorithm works as follows: 

 

Task Manager:  

 

1. Read list of files to process. 

2. Read reference image. 

3. Broadcast reference image to all workers. 

4. While image-list is not empty: 

a) Wait for a request from a worker; 

b) Pop an image file off the list; 

c) Send image file name to worker. 

 

 

Worker: 

 

1. While there are still images to process: 

a) Request an image file name from task-manager; 

b) Load image from file system; 

c) Perform stabilization algorithm on image. 
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Our implementation relies heavily on the Insight Segmentation and Registration Toolkit (ITK)
1
, 

an open-source suite of libraries for image processing.  ITK uses templated classes for 

registration, allowing rapid exploration of a variety of different distance metrics, interpolation 

methods, and optimization schemes.  While we chose standard approaches for this prototyping 

effort, to adapt for cloud effects and other application-specific issues, we will likely need to 

implement custom metrics and optimization schemes to provide the data quality required for 

accurate modeling. 

 
4.6. Cloud Detection 
 

Identification of visible clouds in the images is not a straightforward process.  Challenges 

include (1) variation in average image intensity with time of day and time of year due to the 

variable angle of the sun on the land surface and (2) variability of the brightness of ground 

features, such as dry lake beds, which can appear very similar to clouds. 

 

4.6.1. Thresholding 
 

One simple method of identifying clouds, called Thresholding, is based on simply finding pixels 

with intensity values above a certain value.  This can be accomplished with a fixed threshold 

intensity value or with a moving threshold that depends, for example, on features within the 

image.  A fixed threshold does not accurately represent the changes in brightness of the entire 

image throughout the day or seasonal variations.  A dynamically adjusted threshold value must 

either be based on a full understanding of all variations affecting the images, or be set by the 

image itself by finding groups of brightest pixels.  The brightest pixel method works well during 

any time or date, but only if there are clouds in the image.  Moreover, the brightest pixel method 

works better under some weather conditions than others.  For example, cumulous clouds are 

easily distinguished from the background because they are the brightest features in the image, 

whereas broad stratus clouds are more difficult to distinguish from background.  Figure 15 shows 

an example of cloud detection using a threshold determined by the brightest pixel technique. 

 
Figure 15.  Example of Cloud Detection using Thresholding: raw image (left) and detected 

clouds (colored features, right). 

 

 

                                                 
1
 http://www.itk.org 
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4.6.2. Movement Detection 
 
Another method of detecting clouds is referred to as Movement Detection.  In this technique the 

intensity is compared between pairs of images at the pixel level.  Where the difference in 

intensity exceeds a certain threshold, it is assumed that movement has occurred at that pixel.  

With accurate jitter correction, the only features in the image that can move are clouds, therefore 

pixels with movement are assumed to be clouds.  One problem with this method is that it can 

only identify leading and trailing edges of clouds.  This is because the middle of the cloud may 

cover the same pixels in both images and therefore the difference between intensity at these 

pixels may not exceed the threshold.  Another problem with this method is that it depends on the 

accuracy of the image stabilization method, since errors in stabilization can lead to apparent 

movement of ground features and ensuant misidentification of these features as clouds.  Figure 

16 shows an example of cloud detection using the movement detection technique, and illustrates 

the main problem with this method.  Parts of the clouds recognized in the image are not 

identified as clouds by the movement detection technique.  Note how the large cloud in the 

center of the image appears thinner in the movement detection image.  Several shadows on the 

ground are also identified as clouds since they move between images. 

 
Figure 16.  Example of Cloud Detection using Movement Detection: raw image (left) and 

detected clouds (white features, right). 

 

Because of the challenges and the associated problems with thresholding and movement 

detection, we focused our attention on a third method called Background Subtraction.  This is 

discussed in the next section. 

 
4.6.3.  Background Subtraction 
 
The method of background subtraction is, as its name suggests, simply the process of estimating 

what an image of the ground would look like and subtracting this image from the actual image.  

Areas with clouds should then show up as areas where the intensity difference is above a certain 

threshold.  Figure 17 shows an example of cloud detection by the method of background 

subtraction.  Note how the background has essentially disappeared (i.e., is colored black in the 

right panel of Figure 17) and all that remains in the subtracted image are the clouds. This method 

allows for better detection of clouds represented by pixels with lower intensity.  Even small 

changes in intensity can be detected between the image and the expected background.  For 

example, with background subtraction a pixel could be detected if it is just slightly brighter than 

normal, even if it is still darker than another geographical feature in the image.  As a result, 

image analysis depends only on the clouds in the image, and not any of the background content. 
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Figure 17.  Example of Cloud Detection using Background Subtraction: raw image (left) 

and detected clouds (white features, right) 

The method of Background Subtraction requires determination of a background image without 

the presence of clouds.  Pixel intensity in an image of the background would vary due to diurnal 

and seasonal changes in solar illumination.  Suitable background images are not available for all 

times of interest.  We developed and trained a neural network to produce reference background 

images.   

 

We first used Movement Detection to select a subset from available images that contain no 

clouds.  For each of the images with clear skies, we computed statistics (mean, minimum and 

maximum) of the pixel intensity within each image.  We noted that these statistics vary in a 

smooth manner during daylight hours and in a more complex but non-random manner annual.  

Figure 26 illustrates diurnal variation in minimum, average and maximum pixel intensity for one 

day of the year (left panel) as well as variation in average pixel intensity for different days of the 

year (right panel).  Figure 27 shows the average pixel intensity over the course of a year for 

images that are classified as clear sky days.  On each day, average pixel intensity begins low 

during morning hours, rises to a peak and then declines.  Due to the display of an entire year in 

Figure 27 and the particular plotting program in use, average pixel intensity for individual clear 

sky days appears as a spike, and straight lines connect average pixel intensity values from the 

end of a clear sky day to the beginning of the next clear sky day.  The variation of maximum 

average pixel intensity over the course of a year is visually indicated by the sequence of peaks. 
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Figure 26.  Diurnal variation in pixel intensity during clear skies. 
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Figure 27.  Annual variation in average pixel intensity during clear skies. 

 

 

Because the background image varies by season and time of day, and clear sky images are not 

available at all times, we use a neural network trained on the clear images throughout the year to 

generate images for all other times during the year.  Pixel intensities do not necessarily vary 

algebraically between clear sky images because of changes in earth’s albedo, the occurrence of 

snowfall, and atmosphere properties.  The trained neural network produces minimum, average 

and maximum pixel values for times when clear sky images are not available.  One image is 

manually selected as the baseline image.  A scaling algorithm is applied to adjust the pixels in 

the baseline image so that the synthetic image has the target minimum, average and maximum 

pixel intensities. 

 

Figure 28 compares pixel intensities for synthetic images to those from images during clear sky 

days.  The comparison shows that the neural network and scaling produce images for which the 

average pixel intensity follows the annual pattern.  Moreover, for one clear sky day, the neural 
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network was used to produce synthetic images which were compared to actual images; the 

comparison shows that the statistics for images produced by the neural network and scaling are 

reasonably close to the statistics for the actual clear day images.  Figure 29 compares one 

complete image from the GOES-11 satellite during clear sky conditions to the synthetic image 

generated by the neural network and scaling.  Figure 29 shows that the synthetic image retains 

the general structure and characteristics evident in the GOES-11 image. 
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Figure 28.  Comparison of statistics for pixel intensity between clear sky images and 

synthetic images: (a) annual average pixel intensity; (b) diurnal variation in pixel 
intensity. 

(a) 

(b) 
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Figure 29. Images for 8/19/07 at 11:00AM (PST) centered around Fort Apache on a clear 

day from a) GOES-11 and b) Neural Network Simulation of the background image 

 
4.7. Next Steps 
 
In the previous sub-sections of this section, we describe progress toward a method for simulating 

one-minute irradiance from satellite imagery.  We present a method for image analysis to 

identify and locate clouds in satellite imagery.  The next step is to use the identified cloud 

patterns as input to a neural network that simulates ground irradiance.  We began this effort by 

training a neural network to match cloud patterns observed in imagery with one-minute ground-

based measurements of irradiance.  Figure 30 shows a preliminary result of this effort.  Note that 

the temporal patterns of irradiance from the ground sensor show that in the beginning of the day 

the variability has a different character (rapid shallow changes) than at the end of the day (longer 

duration and larger magnitude changes).  It is also clear that this preliminary attempt at training a 

neural network to produce one-minute irradiance patterns worked quite well later in the day but 

was unable to match variability measured in the late morning.  However, the results shown in 

Figure 30 represent a day with the closest match between measured and simulated irradiance; for 

many other days, our simulation produced irradiance predictions that were not nearly as close to 

ground measurements. 

 

To further develop this approach we believe it would be more successful to train the neural 

network on the clearness index instead of irradiance.  Clearness index is a normalized measure of 

irradiance that is not affected by variations to the time of day or time of year.  By training the 

neural network on clearness index rather than irradiance we believe that we can arrive at more 

accurate irradiance predictions.  In addition, we are exploring ways to calculate summary 

statistics to describe different spatial patterns of the identified cloud fields.  For example, the two 

inset images in Figure 30 show the cloud conditions (imagery) during the beginning and end of 

the day shown.  The difference in the cloud patterns is clear from the images and it may be that it 

would be more successful to correlate one-minute irradiance patterns to categorical variables 

relating to the type of cloud pattern rather than to raw images.  We aim to investigate these ideas 

further in future work. 

 

a) b) 
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Figure 30.  Measured and Simulated Irradiance for Fort Apache at 1 minute resolution for 

May 27, 2008.  Note: Inset images illustrate cloud patterns in vicinity of Fort Apache 
during periods of variability in irradiance. 
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5.  CONCLUSIONS 
 

The scalable grid modeling task combines the high fidelity of electric circuit models with the 

scalability of grid level elements was developed as a tool for the use of transient as well as steady 

state simulation of electric power grids.  Circuit simulation for electric power grid networks has 

some distinct advantages such as the ability to model the grid as a modular scale-up of electrical 

components, and the ability to handle a very large scale network via parallelizable solvers using 

Xyce™ [7], and the ability to interface with the GUI to display simulation values on a grid map.  

The developed graphical user interface not only allows the representation of data over a 

geographic display but can also display time series values of selected nodes.  Further 

development will include the ability to run simulations with the user specifying which nodes and 

edges are to be removed (e.g. generator failure, transmission line outages, and substation 

blackouts). 

 

The Reliability Impacts from Cyber Attack (RICA) task utilizes a high-powered computing 

platform to determine reliability results for complex electric power grids affected by various 

classes of cyber attack. The computed reliability degradation from the base case is due solely to 

the level of cyber attack and the network architecture, and it is independent of any  particular 

outage, load, or calendar values. The RICA system has the capacity to generate results for the 

30,000-bus Western Electricity Coordinating Council (WECC) region transmission grid. Results 

are shown for the IEEE RTS-96 72-bus system. 

 

The PV output variability modeling task describes the preliminary steps of a method to estimate 

high frequency (i.e., one minute) irradiance values from satellite imagery in places where no 

ground measurements are available.  The method proposes to use cloud patterns in each image to 

characterize the variability of irradiance within each 15 minute period between images.  In this 

report, analysis methods are described to estimate cloud positions within images as a precursor to 

estimating high frequency irradiance. 



48 

 

 

 

 



49 

 

6.  REFERENCES 
 

1. P. Kundur, Power System Stability and Control, New York: McGraw Hill, 1994. 

2. T. R. Kuphaldt, Lessons In Electric Circuits, Volume II – AC, Sixth Edition, July 2007. 

3. M. D. Ilić and J. Zaborsky, Dynamics and Control of Large Electric Power Systems, 

Hoboken, NJ: Wiley-Interscience, 2000. 

4. L. G. Meares, and C. E. Hymowitz, ―SPICE Models for Power Electronics‖. 

5. F. Khorrami, P. Krishnamurthy, and H. Melkote, Modeling and Adaptive Nonlinear Control 

of Electric Motors, Berlin: Springer, 2003. 

6. A. Ellis, D. Kosterev, and A. Meklin, ―Dynamic Load Models: Where Are We?‖ Proceeding 

of the IEEE/PES Transmission and Distribution Conference and Exhibition, pp. 1320–1324, 

May 2006. 

7. E. R. Keiter, T. Mei, T. V. Russo, E. L. Rankin, R. P. Pawlowski, R. L. Schiek, K. R. 

Santarelli, T. S. Coffey, H. K. Thornquist, and D. A. Fixel, ―Xyce
TM

: Parallel Electronic 

Simulator, Reference Guide, Version 5.1,‖ Prepared by Sandia National Laboratories 

Albuquerque, New Mexico 87185 and Livermore, California 94550, November 2009. 

8. Control Systems Roadmap Steering Group, Roadmap to Secure Control Systems in the 

Energy Sector, sponsored by the U.S. Department of Energy’s Office of Electricity Delivery 

and Energy Reliability in collaboration with the U.S. Department of Homeland Security’s 

Science and Technology Directorate (January 2006), 

http://www.controlsystemsroadmap.net/pdfs/roadmap.pdf. 

9. Jason Stamp, Annie McIntyre, and Bryan Richardson,―Reliability impacts from cyber attack 

on electric power systems‖; Proceedings of the IEEE Power Systems Conference, (March 

2009). 

10. B. Littlewood, S. Brocklehurst, N. Fenton, P. Mellor, S. Page, D. Wright, J. Dobson, J. 

McDermid, and D. Gollmann, ―Towards Operational Measures of Computer Security,‖ 

Journal of Computer Security, Vol. 2, No. 3, pp. 211-229 (1993). 

11. C. Taylor, A. Krings, and J. Alves-Foss, ―Risk Analysis and Probabilistic Survivability 

Assessment (RAPSA): An Assessment Approach for Power Substation Hardening,‖ in 

Proceedings of the 1st Workshop on Scientific Aspects of Cyber Terrorism, (November 

2002). 

12. S. Singh, M. Cukierz, and W. H. Sanders, ―Probabilistic Validation of an Intrusion-Tolerant 

Replication System,‖ in Proceedings of the International Conference on Dependable 

Systems and Networks, pp. 615-624, (June 2003). 

13. J. McDermott, A. Kim, and J. Froscher, ―Merging Paradigms of Survivability and Security: 

Stochastic Faults and Designed Faults,‖ in Proceedings of the Workshop on New Security 

Paradigms, pp. 19-25, ACM:New York (2003). 

14. N. F. Schneidewind, ―Reliability – Security Model,‖ in Proceedings of the 11th International 

IEEE Conference on Engineering of Complex Computer Systems (ICECCS’06), pp. 269-

278 (August 2006). 

15. Ron Allan and Roy Billinton, ―Probabilistic Assessment of Power Systems,‖ Proceedings of 

the IEEE, Vol. 88, No. 2 (February 2000). 

16. J. R. Conrad, ―Analyzing the Risks of Information Security Investments with Monte-Carlo 

Simulations,‖ in Proceedings of the 4th Workshop on the Economics of Information 

Security, Kennedy School of Government, Harvard University (June 2005). 

http://www.controlsystemsroadmap.net/pdfs/roadmap.pdf


50 

 

17. Marcus Schilling, Armando Leite De Silva, Roy Billinton, and M.A. El-Kady, 

―Bibliography on Power System Probabilistic Analysis (1962- 1988),‖ IEEE Transactions 

on Power Systems, Vol. 5, No. 1, pp. 41-49 (February 1990). 

18. Ron Allan, Roy Billinton, Art Breipohl, and Cliff Grigg, ―Bibliography on the Application 

of Probability Methods in Power System Reliability Evaluation 1967-1991,‖ IEEE 

Transactions on Power Systems, Vol. 9, No. 1, pp. 41-49 (February 1994). 

19. Ron Allan and Roy Billinton, et al., ―Reliability Assessment of Composite Generation and 

Transmission Systems,‖ IEEE Power Engineering Society Tutorial, 90EH0311-1-PWR 

(1989). 

20. Jason Stamp, John Dillinger, William Young, and Jennifer DePoy, Common Vulnerabilities 

in Critical Infrastructure Control Systems, Sandia National Laboratories report SAND2003-

1772C: Albuquerque, New Mexico (2003); presented at SANS SANSFIRE 2003 and 

National Information Assurance Leadership Conference V (NIAL V), Washington, DC 

(July 14-22, 2003). 

21. Michael Berg and Jason Stamp, A Reference Model for Control and Automation Systems in 

Electric Power, Sandia National Laboratories report SAND2003-1000C: Albuquerque, New 

Mexico (2005); published in the Proceedings of the 2005 Power Systems Conference, 

Clemson University (March 2005). 

22. Nancy Spring, ―Industry and Government Partnering for Cyber Security,‖ Electric Light & 

Power (August 2006), http://uaelp.pennnet. com/articles/article display.cfm?article id= 

261363. 

23. Annie McIntyre, Jason Stamp, and Ben Cook, I3P Risk Characterization Report, I3P 

Research Publication, Dartmouth College, New Hampshire (2007). 

24. David Duggan, Categorizing Threat: Building and Using a Generic Threat Matrix, Sandia 

National Laboratories report SAND2007-5791, Albuquerque, New Mexico (September 

2007). 

25. Roy Billinton and Wenyuan Li, Reliability Assessment of Electric Power Systems Using 

Monte Carlo Methods, Plenum Press, New York (1994). 

26. J.R. Ubeda and Ron Allan, ―Sequential Simulation Applied to Composite System Reliability 

Evaluation,‖ IEE Proceedings C, Vol. 139, No. 2, pp. 81-86 (March 1992). 

27. Roy Billinton and J. Tatla, ―Composite Generation and Transmission System Adequacy 

Evaluation Including Protection System Failure Modes,‖ IEEE Transactions on Power 

Apparatus and Systems, Vol. PAS- 102, No. 6, pp. 1823-1830 (June 1983). 

28. Kang Lin and Keith Holbert, ―PRA for Vulnerability Assessment of Power System 

Infrastructure Security,‖ Proceedings of the 37th Annual North American Power 

Symposium, pp. 43-51 (October 2005). 

29. Roy Billinton, S. Kumar, N. Chowdhury, K. Chu, K. Debnath, L. Goel, E. Khan, P. Kos, G. 

Nourbakhsh, J. Oteng-Adjei, ―A Reliability Test System for Educational Purposes — Basic 

Data,‖ IEEE Transactions on Power Systems, Vol. 4, No. 3, pp. 1238-1244 (August 1989). 

30. Billinton, R.; Hua Yang; ―Incorporating maintenance outage effects in substation and 

switching station reliability studies,‖ 2005. Canadian Conference on Electrical and 

Computer Engineering, 1-4 May 2005 Saskatoon, Page(s):599 - 602. 

31. Reliability Test System Task Force of the IEEE Power Engineering Society, ―The IEEE 

Reliability Test System – 1996,‖ IEEE Transactions on Power Systems, Vol. 14, No. 3 

(August 1999). 



51 

 

32. Reliability Test System (RTS) – 1996 files, ―Power Systems Test Case Archive,‖ 

Department of Electrical Engineering at the University of Washington, 

https://www.ee.washington. edu/research/pstca/rts/pg tcarts.htm (retrieved March 2008). 

33. Mills, A., M. Ahlstrom, et al. (2009). Understanding Variability and Uncertainty of 

Photovoltaics for Integration with the Electric Power System, Berkeley National Laboratory. 

34. Perez, R., P. Ineichen, et al. (2002). "A new operational model for satellite-derived 

irradiances: description and validation." Solar Energy 73(5): 307-317. 

  



52 

 

 



53 

 

DISTRIBUTION 

 

1 MS0316 Thomas V. Russo 01445 

1 MS0321 Robert W. Leland 01400 

1 MS0321 John L. Mitchiner 01460 

1 MS0370 John D. Siirola 01465 

1 MS0671 Laurence R. Phillips 05628 

1 MS0671 Bryan T. Richardson 05628 

1 MS0671 Andrew C. Riehm 05628 

1 MS0721 Marjorie L. Tatro 06100 

1 MS0932 Paul R. Wolfenbarger 09513 

1 MS1033 Stanley Atcitty 06113 

1 MS1033 Abraham Ellis 06112 

1 MS1033 Charles J. Hanley 06112 

1 MS1033 Clifford W. Hansen 06112 

1 MS1033 Matthew J. Reno 06112 

1 MS1033 Joshua S. Stein 06112 

1 MS1082 Anthony L. Lentine 01727 

1 MS1104 Rush D. Robinett III 06110 

1 MS1108 Ross Guttromson 06113 

1 MS1108 Karina Munoz 06111 

1 MS1108 Jason E. Stamp 06111 

1 MS1108 Juan J. Torres 06111 

1 MS1124 David G. Wilson 06122 

1 MS1152 Steven F. Glover 01654 

1 MS1315 Jeffrey S. Nelson 01130 

1 MS1316 Mark Daniel Rintoul 01465 

1 MS1318 Brian M. Adams 01441 

1 MS1318 Bruce A. Hendrickson 01440 

1 MS1318 Robert J. Hoekstra 01426 

1 MS1318 Jean-Paul Watson 01465 

1 MS1319 William C. McLendon 01461 

1 MS1319 Ron A. Oldfield 01423 

1 MS1321 David A. Schoenwald 01444 

1 MS1321 Randall M. Summers 01444 

1 MS1322 Sudip S. Dosanjh 01420 

 

1 MS0359 D. Chavez, LDRD Office 01911 

1 MS0899 Technical Library 09536 (electronic copy) 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


